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We previously reported that 4,4-dideuterio-2,2-bis(4-methoxy-
phenyl)-1-methylenecyclopropang-{1)! undergoes the degener-
ate methylenecyclopropane (MCP) rearrangement, involving the
bisected trimethylenemethane (TMM) cation radical intermediate
(do-2")* under the triplet-sensitized photoinduced electron-transfer
(PET) conditions (Chart 1). We now report further mechanistic
studies based on nanosecond laser flash photolysis (LFP), EP
spectroscopy, and time-resolved photoacoustic calorimetry (PAC)
that support a new, energetically favorable mechanism that
requires both TMM cation radical-2"" and TMM d,-2 as key
intermediates in the rearrangement sequence.

Table 1 shows photostationary ratios,-(:d>-1') of the
degenerate MCP rearrangementdefl, yields of dioxolane §)
in oxygenation ofl and transient absorption maximanmgy)
observed in LFP ol under the 9,10-dicyanoanthracene (DCA)-,
1,2,4,5-tetracyanobenzene (TCNB)- Mmethylquinolinium tet-
rafluoroborate (NMQBF,")-sensitized conditions. A mechanistic
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species is a precursor for rearrangement protludthe identities
of the 350 and 500 nm transients may be inferred from the
absorption spectra of catiott (484 nm in CHCN and 499 nm

F\jn CH,CI,") and radica4* (349 nm in CHCN and 352 nm in

CH,CL8). Thus, theima around at 500 and 350 nm can be
unambiguously assigned to the 1,1-bis(4-methoxyphenyl)ethyl
cation moiety of the bisected TMM cation radiczi and the
1,1-bis(4-methoxyphenyl)ethyl radical moiety of the bisected
TMM 2.° The most reasonable process to fdtis back electron
transfer (BET)! from the sensitizer anion radical 8" within a
contact or solvent separated ion radical paitfsens:].

The most reasonable mechanism, based on the spectroscopic
evidence and the product analysis, that accounts for the participa-
tion of two different types of TMM intermediates is a cation

connection among rearrangement, oxygenation, and transientadical cleavage-diradical cyclization (CRCL-DRCY) mechanism

absorption provides evidence for the participation of TMM cation
radical2’t and TMM 2 in the degenerate rearrangement sequence.
Relevant results were obtained under the TCNB- and NMQ
BF,-sensitized conditions (entries-8). Oxygenation ofl to

give 35 and the degenerate rearrangemeibef occur efficiently

shown in Scheme 1. Cation radiaht2* formed by the CRCL
of d-1'" or d-1'** does not directly recyclize td-1"" and d,-
1t but undergoes BET to fornd-2. The degenerate MCP
rearrangement is then completed by the DRCYdg® to d,-1
anddy-1'. This mechanism is supported by time-resolved PAC.

under the sensitized conditions in which two transient absorptions Using PAC for the1l-DCA-biphenyl (BP) systemAH"™([2*/

at Amax = 351 and 500 nm were observed by LFP (entry 3 or 5).
Interestingly, under the sensitized conditions in which only the
transient absorption af..«= 354 nm was observed the degenerate
rearrangement occurs efficiently but not oxygenation (entry 4).

DCA""]) was determined to be 378 0.8 kcal/mol. This result
indicates that recyclization af-2"* to d,-1"* andd,-1*" is at
least 16 kcal/mol endothermic becaudél™([1-7/DCA"]) is
calculated to be 53.0 kcal/m&1> A MNDO UHF calculatior®

Conversely, oxygenation proceeds rapidly but not rearrangement@lso supports the suggestion that the recyclizationet™ at

under the sensitized conditions in which the transigmpt, = 498

the cation radical stage is significantly endothermic: at this level

nm was predominant (entry 6). These results suggest that the

air-sensitive, longer wavelength transient is a precursor for
oxygenation produc3, whereas the shorter wavelength transient
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Table 1. Results of the Degenerate MCP Rearrangemeib-df2 Oxygenation ofl,° and LFP of1¢ under Various PET Conditions
entry conditions dx-1:d>-1' (time/h)  yield of3/% (time/min)  AmaxX(2)/NM  Amax(277)/nm  AOD(2:)/AOD(2)¢

1 DCA/CH;CN 58:42 (4.5) 100 (15) e f
2 DCA-BP/CHCN slow 100 (15) e 494
3 TCNB/CHCN 54:46 (4.5) 100 (20) 351 500 1.3
4 TCNB/CH.Cl, 56:44 (3) 4 (30) 354 f ~0
5 TCNB-BP/CHCI, 56:44 (2) 96 (15) 354 508 2
6 NMQ*BF, -toluene/CHCN slow 100 (5) 350 498 >10

aUnder N. [d2-1] = 100 mM. Deuterated solvent and cosensitizer were usddder Q. [1] = 10 mM. ¢Under N.. [1] = 1 mM. ¢ Ratio of
AOD of 2" to that of2 at 200 ns after excitatiorf.Not observablef No transient absorption was observé&ee footnote 67 Under air.

Figure 1. CIDEP spectrum (left) and its simulation (right) 2f". An
asterisk, *, represents an emission due to chloranil anion radical.
2t is located 18 kcal/mol lower in energy thar. In contrast,
BET from DCA~ to d,-2* is estimated to be about 20.5 kcal/
mol exothermic using the oxidation potential 4f (E®%, = —
0.06 V vs SCE in CHCN) as determined by photomodulation
voltammetry!® Thus the highly exothermic BET presumably
occurs rapidly® to form d,-2, which is 16.5 kcal/mol higher in
energy than eithed,-1 or d>-1'.

The participation of two types of TMM intermediates in the
degenerate MCP rearrangement a1 was further directly

On the other hand, irradiation of anthraquinone witin a
CH,CI, matrix at 20 K provided a characteristic EPR spectrum
of randomly oriented triplet species ascribe®talong with2:*.

In addition to thel AMg| = 1 transition signals, a wedlhMy| =

2 transition was observed at 0.1673 T. The zero-field splitting
parameters were estimated to [@¥hc] = 0.0116 andE/hd =
0.0038 cm? from the spectrum. ThéD/hc| value is smafP
compared with those of other phenyl-substituted TMM deriva-
tives?” The triplet EPR signal of2 persisted at cryogenic
temperature, and the Curie plot of th&Mg| = 2 transition line
intensity gave a straight line between 4.2 and 50 K, indicating
that the ground state o2 is triplet as usual TMMs. It is
noteworthy that while the ground state of the parent T¥lM
triplet with a planar structure in accord with calculatf§hthe
structure of TMM2 is bisected regardless of its triplet ground
state. Since is formed by BET without significant conforma-

confirmed by EPR spectroscopy using chloranil or anthraquinone tional change, the bisected strucfiref 2 is most likely due to

as sensitizers.Figure 1 (left) shows the time-resolved EPR
spectrum of2'* observed at a delay time ofis after the laser
excitation of chloranil (10 mM) witHl (50 mM) in DMSCG? at

that of2** formed by the least motion ring cleavégé 1** which
requires only the rotation of the methylene group but not of the
bulkier diarylmethylene group df*.

ambient temperature. The hyperfine structure (hfs) was analyzed The proposed rearrangement sequence including a diradical-

with two splitting constants corresponding2d [ay (2H) = 1.38
mT, ay (2H) = 1.44 mT, andg = 2.0026]. The observed
spectrum was well reproduced by simulation, in which both the
triplet (E) and radical pair mechanisms (EfApre taken into
account [Figure 1 (right)]. Since the hfs constants gndilue

of 2** are close to those of the neutral allyl radigalt follows
that the unpaired electron is mainly distributed over the allyl part
and the positive charge is localized on the bis(4-methoxyphenyl)-
methyl moiety. The structure of bisected TMM cation radical
2" elucidated by time-resolved EPR well agrees with that from
LFP and CIDNP:
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forming BET proces® was also suggested to similar PET MCP
rearrangements of 2-aryl-1-methylenecyclopropane, 2,2-diaryl-
1-methylenespiropentafeand 1-cyclopropylidene-2,2-diarylcy-
clopropané? The results herein provide the first observation of
the interconversion of the relevant intermediates.
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